

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

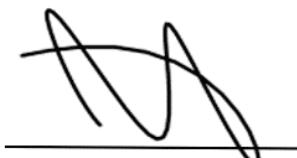
Optimal Calibration, LLC

11205 Hampton Ridge Dr.
Chardon, OH 44024
Kevin Kirchner 440-552-6941

CALIBRATION

ISO/IEC 17025 Accreditation Granted: 17 November 2025

Certificate Number: **L2170** Certificate Expiry Date: **04 December 2027**


Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Granite Surface Plates ^{1,2}			In accordance with Fed Spec GGG-P-463 using Planekator
Overall Flatness	Up to 60 in DL	(83 + 0.3 DL) μ in	
	Up to 432 in DL	(45 + 1.1 DL) μ in	Autocollimator
Local Area Flatness	Up to 0.004 in	31 μ in	Repeat-O-Meter

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 ($k=2$), corresponding to a confidence level of approximately 95%.

Notes:

1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
2. DL = diagonal length in inches; 60 in DL = Up to (36 x 48) in; 432 in DL = {(3 x 4) to (30 x 20) ft}.

Jason Stine, Vice President